
Int. J. Multiphase Flow Vol. 1 l, No. 4, pp. 459-479, 1985 0301-9322/85 $3.00 + .00 
Printed in the U.S.A. © 1985 Pergamon/Elsevier 

I N F L U E N C E  O F  B U B B L E  E X P A N S I O N  A N D  R E L A T I V E  

V E L O C I T Y  O N  T H E  P E R F O R M A N C E  A N D  S T A B I L I T Y  

O F  A N  A I R L I F T  P U M P  

NICHOLAS APAZIDIS 
Department of Mechanics, Royal Institute of Technology, S-100 44 Stockholm, Sweden 

(Received 27 November 1983; in revised form 29 October 1984) 

Abstract- -An airlift pump which raises liquid by means of compressed air introduced near the lower 
end of the eduction pipe is an example of a self-control system. It has been shown by Hjalmars (1973) 
that an occasionally observed breakdown in the self-control mechanism, which leads to instability, is 
due to the fact that the control mechanism is delayed, with the effect that a small, time-dependent 
perturbation of the stationary flow satisfies a differential equation with delayed argument. This 
investigation was carried out with the assumption of a single-phase flow of an ideal incompressible 
liquid. The aim of the present study is to consider the stability conditions of an airlift pump within the 
frame of a more general flow model, namely a separate two-phase flow of compressible gas and 
incompressible liquid, which takes into account the effects of the expasion of gas bubbles during their 
lift and of the relative velocity, i.e. the difference in the velocity of gas bubbles and the liquid. 

1. INTRODUCTION 

An airlift pump is investigated as to its performance and stability within the frame of a 
separate two-phase flow model of compressible gas and incompressible liquid. 

An air compressor is assumed to generate air bubbles of approximately the same radius, 
much smaller than that of the cross-section of the eduction pipe, and distribute them 
uniformly across the cross-section, allowing the bubbly flow approximation. Assuming 
further one-dimensional flow, isothermal expansion of air bubbles, according to Boyle's law 
and neglecting the wall friction we write down separate continuity and momentum equations 
for each phase. Combining the later two we eliminate forces due to mutual hydrodynamic 
drag. Two additional equations are required, however, one being an empirical relation 
expressing the relative velocity, i.e. difference in the velocities of gas and liquid in terms of 
bubble dimensions, bubble concentration and liquid properties. The second relation is the 
equation of state for gas. 

Decomposing the variables in the stationary and small time-dependent perturbated 
quantities we obtain a system of ordinary differential equations of the first order with initial 
conditions for the stationary parts and a system of partial differential equations of the first 
order with boundary conditions for the perturbations. Solving the system for the stationary 
values and satisfying the initial conditions we find values of the rise, i.e. the height of the 
upper pipe opening over the free water level in the basin as function of air and water fluxes. 
Solution of the boundary value problem for the perturbations gives values of the critical rise, 
i.e. values of the rise for which instability sets in, as function of air flux alone. 

The problem is treated as a one-dimensional separate two-phase flow of compressible gas 
and incompressible liquid. The wall friction, temperature effects and the velocity of water 
outside the close neighbourhood of the lower pipe opening are neglected. 

2. FLOW IN THE PIPE [0 -< z ~ L] 

The gas and the liquid phases are considered separately, but variations of the variables 
across the cross-section of the pipe are neglected. Introducing the local volumetric 
concentration of gas a(z, t) we obtain the following forms of the continuity equations for the 
liquid (index L), along the vertical z-axis, shown in figure 8 

( 1  - a)., + [ ( 1  - a ) ~ d . ,  = 0 ,  [2.1] 
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since PL = const. 
and gas (index G) 

(ape)., + (apavc)~ = O. [2.21 

The momentum equations for each phase read (see Wallis (1969)) 

PLVL,, + PLVLVL= + PLg - - f L +  P.= = O, [2.31 

Pcvc,t + Pcvcvc.~ + Peg - f c  + P.z = O, [2.4] 

where fL and fc  are forces entirely due to mutial hydrodynamic drag. Since action and 
reaction are equal we have 

FL = fL(1  -- a) = - - f ca  = -- Fc,  [2.51 

where FL and Fa are defined as equivalent of t h e f ' s  per unit volume of the whole flow field. 
Multiplying [2.3] by (1 - a) and adding [2.4] multiplied by a we obtain after neglection of 

all terms proportional to Pc(pc << PL) the following equation: 

OL(1 -- a)vL, + PL(I -- a)VLVLz + (1 -- a)pLg + p.~ = O. [2.61 

Equations [2.1 ], [2.2] and [2.6] form a system of three equations with five unknowns: a, vL, 
vc, pc and p,  therefore two additional equation's are required. One of which is the equation of 
state for the gas: 

p = const • Pc, [2.7] 

and the other is the equation, defining the relative velocity, i.e. the difference in the velocity 
of gas bubbles va and the liquid vL, and is an empirical relation of the following form (Wallis 

1969): 

vc - vL = (1 - a)"- 'v=,  [2.81 

where n is a function of a suitably defined Reynolds number and v® is the terminal velocity of 
gas bubbles and is expressed in terms of the fluid properties and bubble size. 

The dependence of the terminal rise velocity of a single bubble, v®, upon fluid properties 
has been determined experimentally by Peebles & Garber (1953). For the gas density 
negligible with respect to liquid density the relations are shown in table 1, and plotted in 
figure 1. 

3. FLOW IN THE AIR INJECTION ZONE [-~, 0] 

The equation of continuity is identical with [2.1 ], 

(1 - a). ,  + [(1 - a M L  = o. [3.11 

The momentum equation for the mixture with an introduction of the pressure drop term due 
to friction losses of the sudden expansion, contraction and form type losses in this zone, 
reads: 

pL(I - a)vL,, + PL(1 -- a)vLvL, + (1 -- a)pLg + P,z + Pf.~ = 0. [3.2] 
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Table 1. Terminal velocity of single gas bubbles in liquids (Peebles & Garber 1953) 
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Region Terminal velocity n Range of applicability 

2r2g 
1 v®-  2 r ~ 7 .  lO-Sm 

9UL 
7 

2 v® -- 0.33 g3/~ u~/2 r 5/4 ~ 7 • 10 -5 m < r ~ 1 • 10 -3 m 

Coil/2 3 3 v ® - 1 . 3 5  - I • l O - 3 m < r , ~ 2 ,  lO-3m k~/ 2 

Cgol,/, 3 
4 v ® - 1 . 5 3  - 2 .  10 - 3 m < r ~ 6 . 2 .  10 - S m  \p,/ 2 
5 v® - (gr )  ~/z 0 6.2 • 10 -3 m < r 

The pressure drop term p:,  is assumed to stem from form type losses and does not include 
pressure drop due to the wall friction. In fact, for the pipe dimensions and phase velocities 
considered in this paper these losses are estimated to account for 5% or less of the form type 
losses. We assume that 

p/ ~,= KptV2(~ 't) [3.3] 

The value of the loss coefficient K is chosen so, that the theoretical performance points 
calculated for the model airlift pump described in section 7 fit the experimental data at 
maximum air and water flow rates, giving the value K = 4. 
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Figure I. Terminal velocity of air bubbles as function of bubble size, according to Peebles & Garber 
(1953) .  
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O 
Pc (1 - a)~'t.,, dz 

N ,XP,\ZIDIS 

Integrat ing partially the second term in [3.2] and using [3.1] we obtain: 

o f o  + pL(I - a)vz + oL z't(l - a)., dz 

/o 
+ PLg (1 - a) dz + p(O, t) - p ( - 6 ,  t) + K P L - -  

u~(0, t) 

[3.4] 

Assuming that  the length of the zone is small,  that  is, 6 << v2/g the last equation reduces 

to: 

p(O, t) = p ( - 6 ,  t) - PL[I -- a(z ,  t)]v~(z, t) o _ KpL 12"tvL'O't------Z 
2 

[3.5] 

Equation [3.1 ] gives in the same way 

[1 - a(z, t)]vL(z, t) = [1 - a ( - 6 ,  t ) ]vL( -6 ,  t), [3.6] 

which together  with [3.5] and since a ( - 6 ,  t) = 0 results in 

p(z ,  t) = p ( - 6 ,  t) - pLQ2(t) 
a(z,  t) QZ(t) 

KpL [3.7] 
1 - a(z, t) 211 - a(z, t ) ]  ' 

where Q(t)  = vL( -6 ,  t). 
We are now going to derive an equat ion defining the void fraction in terms of gas and 

liquid volume flows and the relative velocity. Suppose that  in the slice between z and z + dz 
it is injected per second and unit section area  the quant i ty  of  air which under  a tmospher ic  
pressure po would have had the volume: 

d V  = O(z) dz. [3.8] 

Consider  the gas volume injected in the slice between z and z + dz per unit t ime, 

compressed to pressure p 

d__V = ~rRZ p~ 0 dz, [3.9] 
dt p 

where R is the radius of  the cross-section of  the pipe. I f  dz is the distance covered by the air 

bubble during t ime dt then 

d z  
dt = a) ,_ l . [3.10] 

VL + v~(1 -- 

We thus obtain: 

d V Pa 0 dz 
da rcR2dz p(z ,  t) vL(z, t) + v=[1 - a(z, t)] "-~ ' [3.11] 

or  

Q(t) ) 
p(z ,  t) 1 - - - ~ z ,  t) + v®(1 - a(z ,  t)) "-~ da = pod dz. [3.12] 
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Introducing p(z ,  t) according to [3.7], integrating the obtained relation from - 6  to 0 and 
neglecting the terms proportional to pLQ 2, which are small as compared top( -6,  t) we obtain 
an approximate equation, defining the void fraction a(0, t) at the end of the air injection 
zone. For n ~: 0 this equation reads: 

In[1 - a(O, t)l v=(0, t__.__..~) [1 - (1 - a(0, t))"] Pa q [3.131 
nO(t )  p ( - 6 ,  t) Q(t)  

and for region 5 (n = 0): 

q ;]} a(0, t) = 1 - e x p  - (--'~6, t) O(t)  + v=(O, t ' [3.141 

where 

fo q = -~ 0 dz 

is the total volume of air injected per unit time and unit section area at atmospheric 
pressure. 

4. F L O W  I N  T H E  B A S I N  

Following the presentation by Hjalmars (1973) we assume an irrotational potential flow 
in this region. Introduction of the velocity potential in the continuity equation gives the 
Laplace equation. Integrating the momentum equation written in terms of the velocity 
potential from the lowest point of the air-injection zone z = - 6  to the free water level z = 
L - H, see figure 8, the following relation is obtained: 

p ( - 6 ,  t) - p o  + pLg(L - H )  - ' /2pLQ2(t)  + pL~( -6 ,  t), [4.1] 

where 4~(z, t) is the velocity potential. 
Since ~b(z, t) satisfies the Laplace equation and the boundary conditions 

- c b . z = Q ( t )  f o r z = - 6  and 4 ~ = 0 f o r z = L - H ,  [4.2] 

the 4~-fieids for different t-values are all similar and proportional to Q(t) .  We have thus: 

4~(-6, t) = - IQ(t) ,  [4.3] 

where / is a length, which can be calculated from the stationary flow in the basin, and which 
is of the same order of magnitude as the distance from the air-injection zone to the nearest 
point in the basin, where the water velocity is negligible. Since we assume the water velocity 
in the basin is small already on small distances from the lower pipe opening, we neglect the q~ 
term in [4.1]. This is equivalent to the assumption that the flow in the basin is quasi- 
stationary, so that the local time derivatives of the velocity may be neglected. 

5. T H E  S T A T I O N A R Y  S T A T E  

Consider small time-dependent perturbations of the stationary values h(z), bL(z), be(z), 
p(z) and Q. 
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a(z, t) = 3(z)[1 + ect(z, t)], 

vL(:, t) = zT, L(z)[1 + ~uL(z,/)], 

v~(z, t) = ha(z)[1 + eua(z,/)], 

p(z, t) = p(z) + er(z, t), 

Q(t) = {)[1 + oT(t)]. 

[5.ll 

[5.21 

[5.31 

[5.41 

[5.51 

Introducing relations [5.1]-[5.5] in [2.1], [2.2], [2.6] and using [2.8] we obtain various 

systems of ordinary differential equations for the stationary values of the gas volumetric 
concentration h(z) and pressure p(z) for various regions, depending on the bubble dimen- 
sions. In region 3(10 -3 m < r _< 2 • 10 -3 m ) ,  for example, the system of two equations with 
initial conditions takes the following form: 

3 ' =  PLg(l -- 3) ~ + (1 3) -----------~ p - 2 c( - 3)-'/2p7/6 

[ b 7 ]-i b 2 } - I  
•-i--~-t-~c(l-3)'/2ff/6 -pL(1--a) ~ 

b 2 
p' = -pLg(l  - 3) - PL (1 - 3) 2 3', 

[5.6] 

[5.7] 

satisfying the initial conditions that the values of 3(0), p(0) are those, evaluated by means of 
[4.1 ], [3.12] and [3.4]. Here we have introduced: 

b = [1 - h(O)]bL(O), k = 5(O)/3(O)ba(O) and c = b~(O)p-'/6(O) 

with b.(0) according to table 1. 
The value of the rise H is chosen so that p(L) = p,.  Analogical systems of equations with 

initial conditions are obtained for other regions. Solution of these equations gives values of: 

H 
the dimensionless rise A = ~ ,  [5.8] 

versus, 

for various values of 

the dimensionless water flux I" = Q_(2gL) -1/2 

the dimensionless air flux 3' = q(2gL)-'/2 

[5.9] 

[5.1o] 

and different bubble sizes and pipe lengths, see figures 2, 3 and 4. 

6. PERTURBATIONS OF THE STATIONARY STATE 

Equations of continuity and momentum in the pipe, air injection zone and the basin give 
the following system of linear partial differential equations of the first order with the 
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Figure 2. Comparison of theoretical performance with experimental  values for a model airlift  pump. 
L - 0.49 m, r 0 - I-  10 -3 m. 

boundary conditions for the perturbations a(z ,  t) ,  uL(z, t)  and r(z, t): 

apa, + a~r, + (~b~.)'(a + uL) + (~L) ' r  + ap~,(~  + u..,) 

+ a~nr~ + c . (O)(1-  -~) [a(1 - a)"-'#-"/3]',r 

+ c . (O) (1 - -~ )  a ( 1 - a ) " - ' , - ' n , r , + c . ( O ) [ a ( 1 -  a)"-: 

• ( 1  - na)#'-"n] 'a  + c.(O)a(l - a)"-2(1 - ~a)p,- . .n~ = o, 

gta.t + (gZbL)'a + fibLa~ -- O.uL~ = O, 

[6.11 

[6.2] 
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Figure 3. Comparison of theoretical performance with experimental values for a model airlift pump. 
L = 0.49 m, ro = 5.10-4 m. 

. A t A 

o, QuL., + 2p,Qv,u~ + mQg, LuL~ + ~ _ ~ # ' o ~  + ~r~ = O. 

Boundary conditions 

{~uL(0, t) - h (0)bL(0)a (0 ,  t) = Qr/(t), 

rr(0, t) = -R~Q~ (~i + a(o) a(o) 
h ( ~ ( t )  + [1 -- 6(0)12 a(O, t) 

K 6(0)  ) 
+ [1 - a (0) ]  z r/(t) + K [1 --~'(-0)] 3 or(0, t) , 

h ( O )  a(O, t) - b~(O) b(O)[ l  - gz(O)]"-'a(O, t) 
I - a(o) ,Q 

[6.31 

[6.4] 

[6.5] 
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Figure 4. Theoretical performance of airlift pumps with various pipe lengths. (a) L - 5 m; (b) L = 10 
m; (c) L ~ 25 m; (1): 3' - 0.04; (2): 3" - 0.07; (3): 3" - 0.1; (4): 3" - 0.13. 

b=(O) p~ q 
+ [1 - (1 - h(O))"]r/(t) . r/(t). 

n Q  p(-~) (2 
[6.6] 

In region 5 (6.6) takes the form: 

1 p~ qQ 2 { [ P" 
,)  = - [ 0  + exp - 0 

a-(L, t) = O, 

+q®(o)~ n(t), [6.6a1 

[6.7] 

where c.(0) = b®(0)pm/3(0) and m depends on the region and is equal to the exponent of  r in 
the table 1. 
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Assuming that the perturbation of the water velocity at z = -6 ,  r/(t) has the form: 

r/(t) = Re[ce~'], [6.8] 

where c = c~ + ic2 and o~ = x + iy are complex constants, we find the corresponding solution 
of the system [6.1]-[6.3] with boundary conditions [7.4]-[7.6] in the form 

co(z, t) = Re[A(z)e~'],  [6.9] 

uL(z, t) = Re[U(z)e~'] ,  (6.10] 

~r(z, t) = Re[H(z)e~'], [6.1 1] 

where 

A ( z )  = A , ( z )  + iA2(z), [6.12] 

U(z) = U, (z) + iU2(z), [6.131 

n ( z )  = 1-I,(z) + ilia(z), [6.14] 

Consider now the same boundary value problem [6.1]-[6.7] for the corresponding complex 
valued functions 

~1 * ( t )  = ce  ~', [6 .15 ]  

a * (z, t) = A ( z ) e  ~', [6.16] 

u * (z, t) = U(z ) e  ~', [6.171 

II * (z ,  t) = I I ( z ) e  ~'. [6 .18 ]  

Introducing [6.15]-[6.18] into [6.1 ]-[6.7] and separating real and imaginary parts we 
obtain a system of 6 ordinary differential equations with initial conditions. 

A', = f  ~' [f2A, + f3A2 + A U ,  + fsU2 + A H ,  - yt~II2], [6.19] 

U', = ~)-' [xa + ( ab ) ' lA ,  - y a Q - ' A 2  + (IULO-IAt,, [6.20] 

} ~ _  ~ + pLbL[xh + (hbL)'] AI + ypLhbLA2 [6.21] 

- [xpLQ + 2p f?~ , i lU ,  + YPL(~U2 - PLab2A',, 

Ai = f l "  [-f3Al q-f2A2-fsS!  +f4U2 "4-yah, + A n , l  [6.221 

Ui = yQ- thA1 + Q- '  [xa + (,~bD'IA2 + (~-'hbLAi, [6.231 

} n l  = -yoLa~, ,4 ,  - i - ~ p  + p & [ x a  + (abL)'] A2 [6.241 

- ypLQU,  - [xPLQ + 2OLQb'LIU2 - pLab[A;. 
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where 

f , ( z )  = p~a~Ig, -/sa:~IO -' - @~, - g~ [6.25] 

A(z)  = x @  + (@~,~)' + ~ + @ ~ O - '  [xa + ( a ~ ) ' ]  

/ -g ,  ~ _ a p  + o : ,dxa  + ( a ~ ) ' l  , 

~(z )  = - y @  - ya~ /5~Q - '  + yp~a.:,,g,, 

[6.26] 

[6.271 

f . ( z )  = (@bL) '  - g , ( xpLO + 2PLObL), [6.281 

f s ( z )  = YPLOg,,  [6.29] 

f6(z) = xa + g'~, [6.301 

g,(z) = a~,,. + c.(O) 0 - 3 ) a ( l - a ) " - ' / 5  -"/3, [6.311 

g2(z) = c,,(0)5(1 - 5)"-2(1 - nil)~5 t-''/3. [6.32] 

Initial conditions 

A , ( o )  = 

v®(O) p,, q 
nO [1 - (1 -- h(O))"] /5(--6) O 

a ( o )  
v®(O) 5(0)(I - ,~(0))"-' + 1 - 5(0--"~ 
O 

C 1 ~ OLoCI, [6.33] 

U,(O) =[1 + a ( 0 ) ~ O t o ] C  ,, [6.34] 

111(0) = 

A: [I + h(O) h(O) K 
-P~u [ ~  + {I - a(o)] 2 ,~o + {I - a(o)] 2 

n(t) 

1 
+ K [1 - h(0)] 3 aoJCl, 

and identical relations for A2(0), U2(0), II2(0) and c2. 
In region 5 the form of ao is different and is obtained by means of [6.6a]: 

[6.35] 

O~ 0 q0 q l} h(O)/5( '5)  [Q +-~=(0)] 2 exp - h(-~)  O + ~=(o) 
[6.361 

Additional condition (6.7) gives: 

II,(L) = O, [6.371 

II2(L) = 0. [6.381 

Considering the neutral stability mode, x = 0 and solving system [6.19]-[6.24] with 
initial conditions [6.33]-[6.35] we are seeking values of the water velocity 0 and frequency 
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Figure 7. Theoretical neutral stability and oscillation period curves for L - 25 m and K - 8. 

of oscillations y so, that the boundary conditions at the upper end of the pipe [6.37], [6.38] 
are satisfied. Values of the dimensionless critical rise Ac corresponding to these values of 
are plotted versus dimensionless air flux 7. These neutral stability curves for the flows with 
different bubble sizes and for the pumps with various pipe lengths are displayed in figures 5, 
6 and 7. 

7. E X P E R I M E N T S  A N D  C O M P A R I S O N  TO T H E O R Y  

A series of simple experiments had been carried out on a model airlift pump illustrated in 
figure 8. The pump consisted of an air injection chamber and the riser pipe with an elbow at 
the top. The height of the riser pipe from the end of the air injection chamber to the top 
(defined as L in figure 8) was 490 mm and the inner diameter 13 mm. The pump was 
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Figure 8. Arrangement of a model airlift pump. 

submerged in the water container so that the rise, height of the upper pipe opening over the 
free water level in the container, (defined as H in figure 8) could be varied from 130 mm to 
490 mm. 

The air was introduced in the air injection chamber near the lower pipe opening through 
a porous 15 mm high cylinder. The air flow rate could be varied from 1.23 l i t /min to 3.77 
l i t /min in small steps. For each value of the air flow rate a series of measurements of the 
corresponding water flow rates at different values of the rise had been carried out. Accuracy 
of the air and water flow measurements is estimated as approximately __.3% for each 
quantity. For each value of the air flow rate values of  the rise were increased gradually from 



8 . 0  

130 mm until a critical value was reached and the flow became unstable, resulting in a 
periodic emptying and refilling of the riser. The critical values of the rise were measured 
along with the periods of oscillations at each value of the air flow rate. 

Dimension of air bubbles generated in the air injection chamber was estimated visually 
and by measuring the rise velocity of single bubbles in the water container. The air bubble 
diameter was estimated to be approximately 2 mm during the first series of measurements. 
The measurements were repeated using smaller air bubbles with a diameter of approxi- 
mately 1 mm. The size of air bubbles was reduced by an addition of a few drops of a 
detergent (liquid soap) to water in the container. A 10 to 40% increase in the values of the 
rise at the corresponding values of air and water flow rates as compared to the flow with 2 
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Figure 9. Compar i son  o f  osci l lat ion periods with  exper imenta l  va lues  for a model  airl ift  pump.  
Theoret ica l  curves: (1):  ro - 1 . 1 0  -~ m;  (2):  ro - 5 . 1 0  -4 m;  (3):  s ingle -phase  theory.  Exper imenta l  

values: A: ro - 1 . 1 0  -9 m; I-I: r o - 5 . 1 0  -4 m. 
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mm bubbles had been observed. The increase in ihe values of the critical rise was even more 

drastic, especially at the low values of air flow rates, at which the dimensionless critical rise 

increased from ca 0.35-0.85. At the higher values of air flow rate A increased from 

0.35-0.75. 

Period of oscillations decreased from c a  2 s-I  s as the air flow rate was increased from 

minimum to a maximum value. Slightly higher values of the oscillation periods were 

observed for a flow with smaller bubbles. 

The performance and stability data of measurements were recalculated to a dimension- 

less form and compared to the data obtained by the theoretical analysis. The value of the 

friction loss coefficient K of the abrupt enlargement, contraction and form losses in the air 

injection chamber was chosen to fit the value of the rise at the maximum air and water flow 

rates. 

The theoretical performance curves together with the experimental points are plotted in 

figures 2 and 3. The theoretical curves match the experimental results over the whole range 

of air and water flow rates within 15% and within 5% at higher values of air flow rates. 

Reduction of the bubble diameter from 2 mm to 1 mm leads to 30-40% increase in the values 

of the rise at low values of water flow rates. At higher values of water flow rates the increase 

is reduced to 5-10%. 

Theoretical and experimental values of the critical rise and period of oscillations for the 

flows with two bubble sizes are shown in figures 5 and 9. For a flow with 2 mm bubbles the 

critical rise increases from ca 0.35 at 3' = 0.045 to a maximum value of 0.5 at 1, = 0.07. A 
further increase in the air flow rate leads to a slight decrease in the values of Ac which drop 

from the maximum value to A c = 0.48 at 3' = 0.12. The theoretical curve matches the 

experimental values fairly well with a maximum deviation of approximately 10%. As a 

comparison a curve, representing values of the critical rise and obtained by means of 

single-phase theory in which the friction effects were neglected, see Hjalmars (1973), is 

plotted in the same figure. This curve has no local maximum and predicts an increase in the 

values of the critical rise with an increase in the air flow rate in contradiction with the 

experimental tests. It also reveals a much higher deviation from the experimental data. 

A decrease in air bubble diameter from 2 mm to 1 mm leads to a drastic increase in the 
measured values of the critical rise from 0.35-0.8 at 3' = 0.045. A maximum value of Ac = 

0.85 is then reached at 3' = 0.05 and a further increase in the air flow rate gives lower values 

of Ac which decrease gradually from 0.85-0.75 at 3" = 0.12. Also in this case theory is in good 

agreement with the measured values. The theoretical curve reaches its maximum of 0.78 at 

the same value of the air flow rate 3" = 0.05 and drops with a further increase in 3' to 0.62 at 

3" = 0.12. The maximum deviation of the theoretical curve from the experimental points is 

here approximately 18%. A curve obtained by means of the single-phase analysis disregard- 

ing friction effects shows even a greater discrepancy with the experimental data than in the 

case of 2 mm bubbles. The deviation from the measured values is as high as 68% at low 
values of air flow rates, see figure 3. 

Finally theoretical curves and experimental values of the oscillation periods for the flows 
with two different bubble sizes are shown in figure 9. Here too, a good agreement of the 

theory with experiment and a considerable improvement as compared to the single-phase 
theory is observed. 

The theory may also be compared with the observations on the 25 m pump considered by 
Hjalmars (1973). The observed values for this pump were in the range Ac = 0.28-0.32 and 

T = 15-20 s. With the value K = 4, determined from the observations on the model pump, 
the theoretical results for the 25 m pump are Ac = 0.2 and T = 16.5 s for 3" = 0.045. The 

agreement is seen to be rather satisfactory, already with the K-value of the model pump, but 
can be improved by choosing an adjusted value K = 8, giving A c = 0.25 and T = 18 s, see 
figure 7. 
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Figure 12. Variat ion  o f  air  and water  velocit ies  in the pipe with height  for airlift  pumps with various  
pipe lengths.  (a) L - 0.49 m, (1): 7 - 0.05, r - 0.03,(2): ~- - 0.09, F - 0.05, .(3): 7 - 0.13, [~ - 0.07, 
(b)  L - 5 m,  ( I ) :  7 - 0 .04,  r - 0 .06,  (2): -y  - 0 .08,  r - 0 .08,  (3): 7 - 0 .13 ,  r - 0.08; (c)  L - 10 m, 
(1): 7 - 0 .04,  r - 0 .06 ,  (2):  ,y - 0 .08,  r - 0 .08,  (3): 7 - 0 .13,  r - 0.11; (d) L - 25 m, (1): 7 - 0.04, 

r - 0.06, (2): 7 - 0.08, [" - O.l, (3); 7 - 0.13, I' - 0.12. 

8. F U R T H E R  T H E O R E T I C A L  R E S U L T S  A N D  D I S C U S S I O N  

Further, calculations were performed for the three pipe lengths 5 m, l0  m and 25 m in 
the same range of the dimensionless air and water flow rates. The value of the friction loss 
parameter K depends on the pump construction and should be estimated in every individual 
case. However, since no particular operational pump had been considered, the value of K was 
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taken the same as for the model airlift pump. We also neglected friction losses due to the wall 

friction throughout this paper. For the pipe dimensions and velocities considered here these 
losses are of order of magnitude 5% and less of the form type losses. Performance and 

stability data was obtained for each of the pumps with two different bubble diameters of 1 

mm and 4 mm. For a 5 m pump the ratio of the pressure in the air injection chamber to the 
atmospheric pressure at the top is approximately 1.3-1.4, see figure 10(b). Figures 11 and 12 

display the volumetric gas fraction and gas and water velocities in the riser as function of the 

vertical coordinate z. Performance data is displayed in figure 4. For a 5 m pump reduction of 

the bubble diameter from 4-1 mm leads to a 10% increase in the value of the rise at low 
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Figure 13. Theoretical values of the oscillation periods for airlift pumps with various pipe lengths. 
(a) t o -  5 - 1 0  -~ m; (b) r o -  2 . 1 0  -3m;  ( I ) : L -  5 m; (2 ) :  L - lOre; ( 3 ) : L  - 25 m. 
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values of air and water flow rates (compare the performance curves in figure 4 at 
3, = 0 . 0 4 ) .  

At higher flow rates, however, the difference in the slip ratio decreases and also the 
friction effects become dominating, which results in approximately equal values of the rise 
for the flows with different bubble sizes. 

By increasing the pipe length to 10 m we increase the bottom to top pressure ratio to ca 
1.6-1.8 see figure 10(c) which results in a greater gas expansion during the rise, see figure 
11. Dimensionless phase velocities for a 10 m pump are plotted in figure 12(c). The 
performance curves for the two different bubble sizes (we remind that here and throughout 
this paper air bubble diameter is the equivalent diameter of bubbles in the air injection 
chamber at the bottom of the pump) are shown in figure 4(b). The performance curves are in 
this case steeper, because of the greater friction losses (due to an increase in the dimensional 
air and water flow rates). The values of the rise are also reduced because of the greater 
expansion losses. Reduction of the air bubble diameter from 4-1 mm gives at most a 10% 
increase in the values of the rise, at low air and water flow rates. At higher flow rates values 
of the rise become practically independent of the bubble size and thus the relative velocity. 

Finally the performance of a 25 m pump is investigated. The pressure ratio in this case 
increases to approximately 3 see figure 10(d) which gives significant air expansion and 
increase in the water velocity during the rise, see figures 11 (d), 12(d). Due to greater friction 
and expansion losses as compared to smaller pumps, lower values of the rise are obtained at 
the corresponding dimensionless values of the air and water flow rates, see figure 4(c). A 
reduction in the bubble size gives a maximum of 8% increase in the rise, this however, at low 
air and water flow rates, compare performance curves in figures 4(c) at 3' = 0.04. With 
increasing air and water flow rates the curves become even less sensitive to the bubble size 
than for the smaller pumps. 

Further the stability of the pumps with the three above-mentioned pipe lengths was 
investigated. Critical rise versus the dimensionless air flow rate curves for each pump and the 
two bubble sizes are plotted in figure 6. A drastic increase in the flow stability obtained by 
the air bubble size reduction for a model 0.49 m length pump is not observed for 5, 10 and 25 
m length pumps. The form of the stability curves is, however, similar to that of a 0.49 m 
pump with a flow of 1 mm bubbles. For 5 and 10 m pumps a maximum value of the critical 
rise is obtained at h' approximately 0.08. A further increase in the air flow rate gives the same 
or even slightly lower values of the critical rise. A decrease in the bubble diameter from 4 to 1 
mm leads to approximately 8 percent increase in the values of the critical rise, however again 
at the low values of air flow rate. At higher values of air flow rate, when the slip ratio 
decreases and the friction losses become more important, reduction of air bubble size and 
thus the relative velocity gives the same or even 2-8% lower values of the critical rise. 
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